|
一、征信的基本概念
传统征信是由专业机构通过固定的模型定向采集财务和金融交易信息并对信息进行加工、处理、报告的专业化信用管理服务。传统征信兴起于国外,在美国,以1933年成立的邓白氏公司为代表,在我国主要是以中央人民银行征信系统为代表,是目前我国乃至全球范围内普遍存在的征信业态。我国征信机构的设立和征信业务的开展受《征信业管理条例》的约束,并且需要申请相应的牌照。
大数据征信是指通过对海量的、多样化的、实时的、有价值的数据进行采集、整理、分析和挖掘,并运用大数据技术重新设计征信评价模型算法,多维度刻画信用主体的“画像”,向信息使用者呈现信用主体的违约率和信用状况。
大数据征信活动在《征信业管理条例》所界定的征信业务范围内,其本质仍是对信用主体信息的收集、整理、保存、加工和公布,但与传统征信相比,突出大数据技术在征信活动中的应用,强调数据量大、刻画维度广、信用状况动态交互等特点,可作为征信体系的有益补充。
二、大数据征信的创新特点
从表面上看,大数据征信和传统征信似乎只是数据的获取渠道不同,前者主要来自于互联网,后者主要来自于传统线下渠道,但是二者存在较大的差异。大数据征信创新主要表现在覆盖人群广泛、信息维度多元、应用场景丰富及信用评估全面四个方面,由此带来征信成本的降低和征信效率的提高。
首先,覆盖人群广泛。传统征信主要覆盖在持牌金融机构有信用记录的人群。大数据征信通过大数据技术捕获传统征信没有覆盖的人群,利用互联网留痕协助信用的判断,满足P2P网络股票论坛上股票、第三方支付及互联网保险等互联网金融新业态身份识别、反欺诈、信用评估等多方面征信需求。
其次,信息维度多元。在互联网时代,大数据征信的信息数据来源更广泛,种类更多样。大数据征信数据不再局限于金融机构、政府机构以及电信提供的个人基本信息、账单信息、信上股票记录、逾期记录等,还引入互联网行为轨迹记录、社交和客户评价等数据。这些数据在一定程度上可以反映信息主体的行为习惯、消费偏好以及社会关系,有利于全面评估信息主体的信用风险。
再次,应用场景丰富。大数据征信将不再单纯地用于经济金融活动,还可将应用场景从经济金融领域扩大到日常化、生活化的方方面面,如租房租车、预订酒店、签证、婚恋、求职就业、保险办理等各种需要信用履约的生活场景,在市场营销支持、反欺诈、上股票后风险监测与预警和账款催收等方面具有良好的应用表现。
最后,信用评估全面。大数据征信的信用评估模型不仅关注信用主体历史信息的深度挖掘,更看重信用主体实时、动态、交互的信息,以信用主体行为轨迹的研究为基础,在一定程度上可以精准预测其履约意愿、履约能力和履约稳定性。此外,大数据征信运用大数据技术,在综合传统建模技术的基础上采用机器学习建模技术,从多个评估维度评价信用主体的信用状况。
股票论坛米助手是一款方便出股票论坛人初步全面的审核股票论坛款人申请资料的平台,能够快速全面出具股票论坛款人的信用报告。查看股票论坛款人的基础信息、聚信力信息。包括用户联系人
数据分析、运营消费数据分析、联系人区域汇总、运营商数据分析、联系人信息和地址信息、电商数据分析、出行数据分析以及QQ助手联系人信息等。
关注微信公众号 股票论坛米助手
|
-
|